Instruments for trace analysis of metals and other electrochemically active substances with voltammetry, polarography, and CVS i.e Professional CVS, Professional VA and Portable VA Analyzer.
Potentiostat/galvanostat instruments, modular extensions, software, and accessories for electrochemical research. Our portfolio of electrochemical measuring instruments includes compact to modular and single-channel to multi-channel potentiostats/galvanostats. Use the filters to refine your search and find the perfect instrument for you.
Handheld and laboratory Raman instruments as well as Surface Enhanced Raman Scattering (SERS) analyzers for material identification and verification. Our portfolio of Raman systems includes handheld Raman spectrometers for in-field use, benchtop Raman spectrometers for measurements in the laboratory, and process analyzers for in-line process development. Our Raman devices cater to various industries, from defence and security to food, pharma, and more. Use the filters to refine your search and find the perfect Raman solution for you.
Near-infrared (NIR) spectrometers for non-destructive analysis of a wide variety of samples in the lab and the process, from liquids, solids, and pastes to slurries, tablets, and capsules. Our portfolio of near-infrared spectrometers includes laboratory NIR analyzers for quality assurance and quality control as well as process NIR analyzers for online monitoring of chemical parameters in various industries. Use the filters to refine your search and find the perfect NIR spectrometer for you. Are you looking for Raman instruments?
The use of UV transilluminators for the detection of DNA or RNA in agarose gels, is still very common, although we know quite well that the shorter the wavelength is, the more the DNA will be damaged quickly, which is dangerous especially if the separated DNA should be used in downstream experiments like cloning or sequencing. Just seconds of UV light is enough to reduce the cloning efficiency significantly.
In contrast to UV instruments, the new innovative LED technology uses a much higher wavelength, which means energy-less light. This will lead to the fact that the nucleic acids are not damaged but sometimes sensitivity is lower as compared to UV light. Furthermore, regular BLUE LED technology is working well with green dyes but couldn’t be recommended with red dyes like Ethidium Bromide, because the longer wavelength is favourable for green dyes but not for red components.
F&S Scientific is a leading provider of laboratory and field testing solutions in East Africa. We serve
customers in Healthcare, Industries, Research and Academia